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Abstract. In this paper, we propose a primal-dual algorithm for solving a class of production-
transportation problems. Among m(� 2) sources two factories exist, which produce given goods
at some concave cost and supply them to n terminals. We show that one can globally minimize the
total cost of production and transportation by solving a Hitchcock transportation problem with m
sources and n terminals and a minimum linear-cost flow problem with m+ n nodes. The number of
arithmetic operations required by the algorithm is pseudo-polynomial in the problem input length.
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1. Introduction

Suppose a firm has m sources of given goods, p of which are factories and the
rest are warehouses. There are n terminal stores dealing in the goods. The decision
maker of the firm has to cope with the demands of these terminals, so as to minimize
the total cost of producing the goods and of shipping them to each terminal. This
is the production-transportation problem which we consider in the paper.

Due to economies of scale, the production cost is in general a nondecreasing
and concave function of the output. This means that the production-transportation
problem has multiple locally optimal solutions, many of which fail to be globally
optimal. Hence, the problem belongs to a class of multiextremal global optimization
[10]. Although such a problem is usually difficult to solve, a number of promising
algorithms are proposed for some network problems (see [8,7] for the current
state-of-the-art of nonconvex network optimization).

In their recent articles [19, 20], Tuy et al. proposed a strongly polynomial algo-
rithm for solving a special type of production-transportation problems, where the
number p of factories is fixed at two or three and warehouses are absent, i.e.m = p.
Their result sharply contrasts with general concave minimization problems, which
are NP-hard even when just one variable is nonlinear [17]. They have further devel-
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oped this algorithm to solve the problem with any fixedm = p in a subsequent arti-
cle [21]. Another special type has been studied in our article [13], where warehouses
are absent again but the numberp of factories is not fixed. We assumed that terminals
are partitioned into p�1 disjoint sets and each of p�1 factories is allowed to supply
only its assigned set of terminals. We exploited this network structure and solved
the problem in time O(Bnp), where B represents the total demand of terminals.

In this paper, we assume that m � p, i.e. there can be some warehouses, each
of which produces nothing but supplies a certain amount of the goods. Under this
condition, we will concentrate on the case p = 2, i.e. among m(� 2) sources
there are two factories, each of which can produce the goods and also supply any
terminals with them. In Section 2, we reduce the problem to minimization of a
univariate function F , each value of which is provided by an ordinary Hitchcock
transportation problem with m sources and n terminals. In Section 3, we construct
an auxiliary network with m+n nodes associated with the transportation problem
giving the values of F . Then we show that local minima of F can be obtained
in the course of computing a minimum linear-cost flow in the auxiliary network.
Section 4 is devoted to the algorithm for globally minimizing the total cost of the
original problem. The number of arithmetic operations required by the algorithm
is pseudo-polynomial in the problem input length. Computational results are also
reported. In Section 5, we discuss a class of minimum concave-cost flow problems
related to our production-transportation problem. We close the paper with some
concluding remarks in Section 6.

2. Reduction to Minimization of a Univariate Function

We have two factories, each of which can produce at most ai units of the goods,
i = 1; 2, and m � 2 warehouses, each with a supply of ai units, i = 3; . . . ;m.
The cost of producing y1 and y2 units at factories 1 and 2 is given by g(y1; y2).
We assume that g : R2 ! R

1 is a concave function. In [19,20,21], the production
cost has not been assumed to be separable, and neither is g throughout this paper.
On the other hand, each of n terminals has a demand of bj units, j = 1; . . . ; n. We
also know the unit cost cij of shipping the goods from source i, which is either a
factory or a warehouse, to terminal j. Our problem is then formulated as follows:

���������������������

minimize
mX
i=1

nX
j=1

cijxij + g(y1; y2)

subject to
nX
j=1

xij =

�
yi; i = 1; 2
ai; i = 3; . . . ;m

mX
i=1

xij = bj; j = 1; . . . ; n

xij � 0; i = 1; . . . ;m; j = 1; . . . ; n

0 � yi � ai; i = 1; 2;

(2.1)
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Fig. 2.1. Example of the problem.

where xij’s, y1 and y2 are variables to be determined. We assume that all constants
ai’s, bj’s and cij’s are nonnegative integers. Figure 2.1 shows an example of (2.1)
with 4 sources and 5 terminals.

Any feasible solution of (2.1) has to satisfy

y1 + y2 +

mX
i=3

ai =

nX
j=1

bj : (2.2)

Hence, letting

�g(y) = g

0
@y;

nX
j=1

bj �
mX
i=3

ai � y

1
A ; (2.3)

we can rewrite (2.1) as follows:

(TP)

����������������������

minimize
mX
i=1

nX
j=1

cijxij + �g(y)

subject to
nX
j=1

xij =

8<
:
y; i = 1;
d� y; i = 2
ai; i = 3; . . . ;m

mX
i=1

xij = bj ; j = 1; . . . ; n

xij � 0; i = 1; . . . ;m; j = 1; . . . ; n

` � y � u; i = 1; 2;

where

d =

nX
j=1

bj �
mX
i=3

ai; ` = maxf0; d� a2g; u = minfa1; dg: (2.4)
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Note that (TP) can still have multiple locally optimal solutions, since �g : R1 ! R
1

is concave. To exclude trivial cases, we assume in the sequel that ` < �. If we fix
the value of y in (TP), we have an ordinary Hitchcock transportation problem:

(TP(y))

�������������������

minimize
mX
i=1

nX
j=1

cijxij

subject to
nX
j=1

xij =

8<
:
y; i = 1
d� y; i = 2
ai; i = 3; . . . ;m

mX
i=1

xij = bj; j = 1; . . . ; n

xij � 0; i = 1; . . . ;m; j = 1; . . . ; n:

We can obtain an optimal solution of (TP(y)) in polynomial time if ` � y � u.
We denote it by a vector x�(y), whose components are x�

ij
(y), i = 1; . . . ;m,

j = 1; . . . ; n. Let

f(y) =

mX
i=1

nX
j=1

cijx
�

ij(y): (2.5)

Then we see that solving (TP) amounts to finding a global minimum of a function:

F (y) = f(y) + �g(y): (2.6)

The original problem (2.1) is thus reduced to a minimization problem with a single
variable:

(MP) minimizefF (y)j` � y � ug;

which we call the master problem of (TP).

LEMMA 2.1. If y� is a globally optimal solution of (MP), then (x�(y�); y�) solves
(TP), where x�(y�) is an optimal solution of (TP(y�)). �

REMARK . The key to the transformation from (TP) to (MP) is a rank-two
monotonicity property [18, 23] possessed by the objective function of (TP). Let
z = (x; y) 2 R

mn+1 and h(z) =
P

m

i=1
P

n

j=1 cijxij + �g(y). Then, for c1 =

(c11; c12; . . . ;
cm;n�1; cmn; 0) 2 R

mn+1 and c2 = (0; . . . ; 0; 1) 2 R
mn+1 ,

hc1; z� z0i � 0 and hc2; z� z0i = 0 imply that h(z) � h(z0); (2.7)

whenever z and z0 is feasible to (TP). The function h is certainly concave onRmn+1 ,
but its concavity is embedded in a two-dimensional subspace. In a series of articles
[19, 20, 21], Tuy et al. have also exploited the property (2.7) to design strongly
polynomial algorithms for problems without warehouses. �
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3. Characterization of the Univariate Function

Since the objective function F of (MP) is univariate, we can obtain a globally
optimal solution y� by enumerating local minima of F (y) successively from y = `

to u. To state this systematically, we need to characterizeF . As seen in the previous
section, F is composed of two functions f and �g. The latter is given, whereas the
former requires solving the transportation problem (TP(y)) for all y in the interval
[`; u]. This fact, however, gives the shape of f in outline.

PROPOSITION 3.1. Function F : [`; u] ! R
1 is continuous and piecewise con-

cave.
Proof. Since (TP(y)) is a parametric right-hand-side linear program, its optimal

value function f is piecewise affine, convex and continuous on [`; u] (see e.g. [5]).
The sum of affine and concave functions is concave [15], so that F is concave on
each affine piece of f ; moreover, F is continuous on the whole of [`; u] due to the
continuity of f and �g. �

We immediately see from the proposition that among extreme points of affine
pieces of f exists a global minimizer y� of F . This kind of piecewise concave
analysis has its origins in the work by Zangwill in the 60s [24, 245]. He assumed
a piecewise concave inventory cost in a dynamic lot sizing problem.

Let us suppose f(y0) is given for an arbitrary y0 2 [`; u), and hence an optimal
solution x�(y0) of (TP(y0)) is available. In the rest of the section, we will develop a
procedure to compute f(y0+ �) for sufficiently small � � 0. Using this procedure,
we will specify the affine piece of f containing y0.

3.1. MINIMUM COST FLOW IN AN AUXILIARY NETWORK

We first construct an auxiliary graph G(y0) = (M;N;A(y0)) associated with
(TP(y0)), where M = f1; . . . ;mg and N = f1; . . . ; ng are the sets of sources and
terminals, respectively, of (TP) and A(y0) is a set of directed arcs. Based on the
optimal solution x�(y0) of (TP(y’)), we define A(y’) and a capacity uij(y0) of each
arc (i; j) 2 A(y0) as follows (see also Figure 3.1): For each pair (i; j) such that
i 2M and j 2M and j 2 N , let

(i; j) 2 A(y0); uij(y
0) = +1; (3.1)

(j; i) 2 A(y0); uji(y
0) = x�ij(y

0) if x�ij(y
0) > 0: (3.2)

In addition, for each (i; j) 2 A(y0) we define a cost:

cij(y
0
) =

�
cij if i 2M; j 2 N

�cij if j 2M; i 2 N:
(3.3)

In Figure 3.1, the right arcs are constructed from the left one. Let c(y0) and
u(y0) denote the vectors of cij(y0)’s and uij(y0)’s, respectively. Then we have the
following problem in network N (y0) = (G(y0); c(y0);u(y0)):
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Fig. 3.1. Arcs in the auxiliary network N (y0).

(P(�; y0))

�������������

minimize
X

(i;j)2A(y0)

cij(y
0)zij

subject to
X

j2V (i)

zji �
X

j2W (i)

zji =

8<
:
�; i = 1
��; i = 2
0; i 2M [Nnf1; 2g

0 � zij � uij(y
0); (i; j) 2 A(y0);

where zij’s are variables, V (i) = fj 2 M [N j(i; j) 2 A(y0)g and W (i) = fj 2
M [ N j(j; i) 2 A(y0)g. Since (P(�; y0)) is a minimum linear-cost flow problem
in N (y0) with a single source s = 1 2 M and a single sink t = 2 2 M , we can
solve it efficiently using available algorithms. Let us denote an optimal solution of
(P(�; y0)) by z�(�; y0), whose components are z�

ij
(�; y0); (i; j) 2 A(y0).

LEMMA 3.2. For each (i; j) such that i 2M and j 2 N , let

x�ij(�; y0) =
�
z�
ij
(�; y0) if x�

ij
(y0) = 0

x�
ij
(y0) + z�

ij
(�; y0)� z�

ji
(�; y0) otherwise. (3.4)

Then x�(�; y0), whose components are x�
ij
(�; y0)’s, is optimal to (TP(y0 + �)).

Proof. For an arbitrary feasible solution z of (P(�; y0)), let

x0ij =

�
zij if x�

ij
(y0) = 0

x�
ij
(y0) + zij � zji otherwise.

Then we have
nX
j=1

x0
ij

=

nX
j=1

x�
ij
(y0) +

0
@ X
j2V (i)

zij �
X

j2W (i)

zji

1
A

=

8<
:
y0 + �; i = 1
d� y0 � �; i = 2
ai; i = 3; . . . ;m;

mX
i=1

x0
ij

=

mX
i=1

x�
ij
(y0)�

0
@ X
i2V (j)

zji �
X

i2W (j)

zij

1
A = bj ; j = 1; . . . ; n;
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and
mX
i=1

nX
j=1

cijx
0

ij
=

mX
i=1

nX
j=1

cijx
�

ij
(y0) +

X
(i;j)2A(y0)

cij(y
0)zij :

Hence, the feasible set of (P(�; y0)) represents possible adjustments of x�(y0) to a
slight change in y0. Among such adjustments z�(�; y0) requires the least cost, which
apparently implies that x�(�; y0) defined by (3.4) is optimal to (TP(y0 + �)). �

3.2. APPLICATION OF THE PRIMAL-DUAL ALGORITHM

We next try applying the primal-dual algorithm [3] to the auxiliary problem
(P(�; y0)). The algorithm begins with a zero flow in N (y0), and augments it by
adding some flow along a directed path from source s to sink t with the least cost in
N (y0). To find such an augmenting path, we need to solve a shortest path problem
in G(y0) with the arc length c(y0). It follows from (3.2) that there exists some
j 2 N such that (j; 2) 2 A(y0) as long as y0 < d. Hence, we have a shortest path
�(y0) � A(y0) from s to t(= 2 2M). Let

�� = minfuij j(i; j) 2 �(y0)g: (3.5)

LEMMA 3.3. If 0 � � � ��, then

z�ij(�; y0) =
�
� if (i; j) 2 �(y0)

0 otherwise
(3.6)

is an optimal solution of (P(�; y0)).
Proof. Follows from a well-known result on the primal-dual algorithm for

minimum cost flow problems (see e.g. [11]). �

It follows from (3.4) and (3.6) that

f(y0 + �) =

mX
i=1

nX
j=1

cijx
�

ij(�; y0)

=

mX
i=1

nX
j=1

cijx
�

ij
(y0) +

X
(i;j)2A(y0)

cij(y
0)z�

ij
(�; y0)

= f(y0) + �
X

i;j)2�(y0)

cij(y
0
): (3.7)

This implies that f is an affine function over the interval [y0; y0 + ��].

4. Solution Method for the Problem

The above observation about the univariate function F leads to the following
solution method for (MP): Let y0 = ` and let (P(�; y0)) be the auxiliary problem of
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(TP(y0)). From Lemmas 3.2 and 3.3, we can have an interval [y0; y0 + ��], where f
is affine, in the first step of solving (P(�; y0)) by the primal-dual algorithm. In the
same way, we construct (P(�; y1)) for y1 = y0 + �� and determine another interval
[y1; y2]. Repeating this process, we generate a sequence of intervals [y0(= `); y1],
[y1; y2]; . . . ; [yq�1; yq(= u)] such that f is affine on each [yk�1; yk], k = 1; . . . ; �.
Since F is concave on [yk�1; yk], its minimum over the interval is attained at either
yk�1 or yk. Therefore, a globally optimal solution of the master problem (MP) is
given by

y� 2 argminfF (y)jy = y0; y1; . . . ; yqg: (4.1)

In practice, we need not solve each (P(�; yk)) from scratch. Recall that the
primal-dual algorithm [3] builds up a flow step by step, by adding flows along
augmenting paths in some auxiliary networkN 0. At each iteration, we augment the
flow along a least-cost augmenting path �0 inN 0 until the flow reaches the capacity
of �0, and then update the auxiliary network N 0. When we apply this procedure
entirely to (P(u � `; `)), the auxiliary network N 0 and the augmenting path �0 at
the kth iteration just correspond to N (yk�1) and �(yk�1), respectively, and the
capacity of �0 is given by minfuij j(i; j) 2 �(yk�1)g.

4.1. ALGORITHM FOR THE ORIGINAL PROBLEM

The algorithm for solving the original problem (TP) is summarized into the fol-
lowing:

Algorithm PDM.

Phase I. Solve a transportation problem (TP(`)) and let x�(`) be an optimal solu-
tion. Let f(`) =

P
m

i=1
P

n

i=1 cijx
�

ij
(`). Initialize the incumbent:

x� = x�(`); y� = `; F � = f(`) + �g(`):

Phase II. Construct the auxiliary network N (`) = (G(`) = (M;N;A(`)), c(`),
u(`)) of (TP(`)) according to (3.1)–(3.3). Let s = 1 2M and t = 2 2M .
Begin the following with y0 = ` and k = 0:

1� Compute a shortest path �(yk) from s to t in G(yk) with the arc
length c(yk). Let �� = minfuij j(i; j) 2 �(yk)g. If yk + �� > u, then
let �� = u� yk.

2� Let yk+1 = yk + ��. For each (i; j) such that i 2M and j 2 N , let

x�ij(yk+1) =

8><
>:
x�
ij
(yk) + �� if (i; j) 2 �(yk)

x�
ij
(yk)� �� if (j; i) 2 �(yk)

x�
ij
(yk) otherwise.

Also let f(yk+1) = f(yk) + ��
P

(i;j)2�(yk)
cij(yk).
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3� If f(yk+1) + �g(yk+1) < F �, then revise the incumbent:

x� = x�(yk+1); y� = yk+1; F � = f(yk+1) + �g(yk+1):

4� If yk+1 = u, then terminate. Otherwise, update the auxiliary network
N (yk) according to (3.1)–(3.3) and let N (yk+1) be the resultant
network. Let k = k + 1 and return to 1�. �

Note that Phase II of this algorithm is nothing but the primal-dual algorithm for
solving the minimum cost flow problem (P(u � `; `)) if we drop step 3�, in which
a globally optimal solution (x�; y�) of (TP) is computed.

Let us denote by S(m;n) the running time needed to solve a shortest path
problem with mn arcs and m+n nodes, and by T (m;n) that to solve a Hitchcock
transportation problem with m sources and n terminals. As is well known (see e.g.
[1]), both S(m;n) and T (m;n) are lower-order polynomial functions of m and n.

THEOREM 4.1. Algorithm PDM yields a globally optimal solution (x�; y�) of
(TP) in O(CS(m;n) + T (m;n)) arithmetic operations and O(C) evaluations of
g, where C = u� `.

Proof. Phase I requires T (m;n) arithmetic operations to solve a transportation
problem (TP(`)). Phase II computes a shortest path �(yk) and the value �g(yk+1)

at each iteration. The total number of iterations is bounded by C = u � `, since
�� � 1 on the assumption that all constants are integral in (TP). Hence, the assertion
follows. �

REMARKS. 1) In step 1� of Phase II, we cannot use Dijkstra’s algorithm directly to
compute the shortest path �(yk) because some components of c(yk) are negative.
However, on the assumption that all cij’s are nonnegative in (TP), we can transform
c(yk) into a nonnegative vector by introducing node potentials. Then �(yk) can be
computed in time S(m;n) = O(mn+ (m+ n) log(m+ n)) [4]. The readers are
referred to any textbook on network flows, e.g. [1] for further details.

2) The production cost �g is often assumed to be piecewise concave but dis-
continuous, e.g. a fixed-charge cost function. Algorithm PDM can still handle
discontinuous �g’s as long as they are lower semi-continuous, with a minor modi-
fication. Let us divide each [yk�1; yk] at discontinuous points of �g. Then [`; u] is
partitioned into r (� q) subintervals [�k0�1; �k0 ], k0 = 1; . . . ; r, where �k0 is either
a yk or a discontinuous point of �g. Since F = f + �g is concave on the interior
of each [�k0�1; �k0 ], it achieves the minimum on [`; u] at some �k0 by the lower
semi-continuity. Hence, to locate y� in [`; u], we need only to compute the values
of F at discontinuous points of �g as well as yk’s. �

4.2. NUMERICAL EXAMPLE

Let us illustrate algorithm PDM using a simple instance of (TP) given by the table
below:
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sourcenterminal t1 t2 t3 t4 supply capacity

s1 12 1 3 4 y 200

s2 4 9 6 2 300� y 200

s3 2 6 2 10 150 —

demand 80 180 120 70 450 —

where each entry (si, tj) represents the transportation cost cij . The production cost
of factories s1 and s2 is assumed to be

�g(y) = 100:0 �
p
y:

The lower and the upper bounds of y are respectively

` = 100; u = 200:

In Phase I, we solve a transportation problem (TP(100)). Then an optimal
solution x�(100) is as follows:

t1 t2 t3 t4 supply

s1 0 100 0 0 100

s2 80 50 0 70 200

s3 0 30 120 0 150

We also initialize the incumbent:

x� = x�(100); y� = 100;

F � = f(100) + �g(100) = 1430 + 1000:00 = 2430:00:

In Phase II, for each arc (i; j) with x�
ij
(100) > 0 we put a reverse arc (j; i) with

capacity x�
ij
(100) and cost �cij , i.e.

arc(t2, s1) with capacity 100 and cost �1

arc(t1, s2) with capacity 80 and cost �4

arc(t2, s2) with capacity 50 and cost �9

arc(t4, s2) with capacity 70 and cost �2

arc(t2, s3) with capacity 30 and cost �6

arc(t3, s3) with capacity 120 and cost �2;

and denote by N (100) the resultant network. Letting y0 = 100, we proceed to the
repeating process.
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At the first iteration, we compute a shortest path �(100) from s = s1 to t = s2
in N (100) and obtain:

�(100) = (s1, t2, s2); �� = minf1; 50g = 50:

Then we let y1 = 150 and compute x�(150), which is given by

t1 t2 t3 t4 supply

s1 0 150 0 0 150

s2 80 0 0 70 150

s3 0 30 120 0 150

Since

f(150) + �g(150) = 1030 + 1224:75 = 2254:75 < F �;

we revise the incumbent as follows:

x� = x�(150); y� = 150; F � = f(150) + �g(150) = 2254:75:

According to the same rule as before, we update N (100) based on x�(150), and
denote by N (150) the resultant network.

At the second iteration, we compute a shortest path in N (150):

�(150) = (s1, t2, s3, t1, s2); �� = f1; 30;1; 80g = 30:

We let y2 = 180 and compute x�(180):

t1 t2 t3 t4 supply

s1 0 180 0 0 180

s2 50 0 0 70 120

s3 30 0 120 0 150

Since

f(180) + �g(180) = 820 + 1341:64 = 2161:64;

we revise the incumbent again:

x� = x�(180); y� = 180; F � = f(180) + �g(180) = 2161:64:

We also update N (150) based on x�(180) and obtain N (180).
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At the third iteration, we compute a shortest path in N (180):

�(180) = (s1, t3, s3, t1, s2); �� = minf1; 120;1; 50g = 50:

Since y2 +
�� = 230 > u = 200, we modify �� = 20. We let y3 = 200 and compute

x�(200):

t1 t2 t3 t4 supply

s1 0 180 20 0 200

s2 30 0 0 70 100

s3 50 0 100 0 150

Since

f(200) + �g(200) = 800 + 1414:21 = 2214:21 > F �

and y3 = u, we find that the current (x�; y�) is a globally optimal solution of our
instance.

4.3. COMPUTATIONAL RESULTS

Before concluding this section, we will report computational results of testing PDM
on randomly generated instances of (TP).

Algorithm PDM was coded in C language and run on a microSPARC II (70
MHz). The procedure employed to solve (TP(`)) in Phase I was the primal-dual
algorithm [3], which was basically the same as Phase II. Shortest paths in step 1�

were computed by Dijkstra’s common algorithm. The running time of our computer
code is therefore bounded by O((B+C)(m+n)2), where b =

P
n

j=1 bj . The data
values of bj’s and cij’s were drawn from a uniform distribution of integers in the
range [0, 20]. The production function was defined as �g(y) = 100:0

p
y.

Table 4.1 shows the average performance of PDM over ten instances for each
(m;n), which was varied from (20, 60) up to (50, 100). The values of ai’s were
set as follows:

ai =

6664 nX
j=1

bj

�
(m� 1)

7775 ; i = 3; . . . ;m; a1 = a2 =

nX
j=1

bj �
mX
i=3

ai:

Therefore, C was equal to a1 = a2. The row labeled ‘Phase I’ gives the average
CPU time in seconds and the average number of iterations required in Phase I;
the row labeled ‘Phase II’ gives those required in Phase II; the row labeled ‘Total’
gives the totals of those numbers.
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Table 4.1. Computational results of PDM for random C.

m 20 20 20 30 30 30
n 60 80 100 60 80 100

Phase I: CPU time 11.81 21.98 45.78 14.68 32.95 61.48
iterations 94.9 114 143 103 132 154

Phase II: CPU time 1.798 2.777 6.097 1.710 4.103 6.358
iterations 13.8 15.0 19.8 12.5 17.1 16.4

Total: CPU time 13.61 24.76 51.88 16.39 37.05 67.84
iterations 109 129 163 116 149 170

m 40 40 40 50 50 50
n 60 80 100 60 80 100

Phase I: CPU time 22.35 45.70 83.51 32.02 61.99 108.8
iterations 116 142 168 128 154 179

Phase II: CPU time 2.720 4.570 9.641 4.585 7.955 10.78
iterations 14.6 14.7 19.9 19.0 20.4 20.2

Total: CPU time 25.07 50.27 93.15 36.61 69.95 119.6
iterations 131 157 188 147 175 199

Table 4.2. Computational results of PDM when (m;n) = (30; 80).

C 10 50 100 150 200 250

Phase I: CPU time 40.07 40.25 41.88 43.74 45.16 46.99
iterations 132 133 138 145 149 155

Phase II: CPU time 1.278 5.095 9.353 14.06 16.35 20.55
iterations 4.40 18.5 31.0 48.2 56.0 70.3

Total: CPU time 41.35 45.35 51.23 57.79 61.51 67.54
iterations 137 152 169 193 205 225

Table 4.2 shows the average performance of PDM against the variation of C
when (m;n) was fixed at (30,80). Both the values of a1 and a2 were set equal to
C , and those of ai, i = 3; . . . ;m, were set as follows:

ai =

6664
0
@ nX
j=1

bj �C

1
A
�
(m� 2)

7775 ; i = 4; . . . ;m;

a3 =

0
@ nX
j=1

bj � C

1
A�

mX
i=4

ai:

For each value of C , varied from 10 to 250, the same statistics as Table 4.1 are
listed in Table 4.2.

We see from these two tables that Phase II requires much less CPU time and
iterations than Phase I for all test problems. This relation might be reversed if we use
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a polynomial algorithm in Phase I. In that case, however, the total computational
time will naturally be improved at the same time.

5. A Minimum Concave-Cost Flow Problem

In both combinatorial and global optimization, one of the most attractive but
most difficult problems is the minimum concave-cost flow problem. To solve this
NP-hard problem, many algorithms have been developed so far, and some of
them turned out to be promising for some special cases (see [7,8] and references
therein). Especially when both the numbers of sources and nonlinear-cost arcs are
fixed, uncapacitated problems can be solved in polynomial time [9, 12, 19, 22]. In
this section, we will show that capacitated problems with a single nonlinear-cost
arc can be transformed into the class (TP) of production-transportation problems
and hence solved by algorithm PDM in pseudo-polynomial time.

LetG = (N;A) be a directed graph consisting of a setN of nodes and a setA of
directed arcs. We associate with each arc (i; j) 2 A a concave cost gij : R1 ! R

1

and a capacity uij � 0, and with each node i 2 N a number bi, which indicates
its supply or demand depending on whether bi > 0 or bi < 0. Then the minimum
concave-cost flow problem is formulated as follows:

(FP)

�����������

minimize
X

(i;j)2A

gij(xij)

subject to
X

j2V (i)

xji �
X

j2W (i)

xji = bi; i 2 N

0 � xij � uij ; (i; j) 2 A;

wherexij’s are variables,V (i) = fj 2 N j(i; j) 2 Ag andW (i) = fj 2 N j(j; i) 2
Ag. We assume that all constants are integral, and for simplicity that (FP) has a
feasible flow. In this problem, we are concerned with the case where all gij’s except
one, say gvw, are linear functions, i.e. for some nonnegative integers cij’s,

gij(xij) = cijxij ; (i; j) 2 Anf(v; w)g: (5.1)

Given such an instance of (FP), we will construct an instance of (TP).
If flow xvw of the nonlinear-cost arc (v; w) is fixed at an arbitrary value y, we

have a minimum linear-cost flow problem:

(FP(y))

�������������

minimize
X

(i;j)2A0

cijxij

subject to
X

j2V 0(i)

xij �
X

j2W 0(i)

xji =

8<
:
bv � y; i = v

bw + y; i = w

bi; i 2 Nnfv; wg
0 � xij � uij; (i; j) 2 A0;

where A0 = Anf(v; w)g, V 0(i) = fj 2 N j(i; j) 2 A0g and W 0(i) = fj 2
N j(j; i) 2 A0g. As is well known, we can transform (FP(y)) into a Hitchcock
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Fig. 5.1. Transformation from (FP(y)) to (FP0(y)).

transportation problem in the following manner (see e.g. [1] for details): Let us
regard N as the set of sources and A0 as the set of terminals. For each (i; j) 2
A0 we first define two directed arcs (i; (i; j)) and (j; (i; j)), and assign cost cij
to the former and cost zero to the latter. We next let

P
j2W 0(i) uji + b0

i
be the

supply of source i 2 N and uij be the demand of terminal (i; j) 2 A0, where
b0
v
= bv � y, b0

w
= bw + y and b0

i
= bi for each i 2 Nnfv; wg. Figure 5.1 shows

the transformation, where the right network is transformed from the left one.
Now we have the following problem equivalent to (FP(y)):

(FP0(y))

����������������

minimize
X

(i;j)2A0

cij�i(i;j)

subject to
X

(i;j)2A0

�i(i;j) +
X

(j;i)2A0

�i(j;i) =

8<
:
a0v � y; i = v

a0w + y; i = w

a0
i
; i 2 Nnfv; wg

�i(i;j) + �j(i;j) = uij; (i; j) 2 A0

�i(j;k) � 0; i 2 N; (j; k) 2 A0;

where �i(j;k)’s are variables and

a0i =
X

j2W 0(i)

uji + bi; i 2 N: (5.2)

It is easy to see that our instance of (FP) can be solved if we minimize the sum of
the optimal value of (FP0(y)) and gvw(y) subject to 0 � y � uvw . In other words, a
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globally optimal solution of (FP) with a single nonlinear-cost arc can be obtained
if we solve a production-transportation problem:

�������������������

minimize
X

(i;j)2A0

cij�i(i;j) + gvw(y)

subject to
X

(i;j)2A0

�i(i;j) +
X

(j;i)2A0

�i(j;i) =

8<
:
a0
v
� y; i = v

a0w + y; i = w

a0
i
; i 2 Nnfv; wg

�i(i;j) + �j(i;j) = uij ; (i; j) 2 A0

�i(j;k) � 0; i 2 N; (j; k) 2 A0;

0 � y � uvw;

which apparently belongs to (TP).

6. Concluding Remarks

The converse of the result in the previous section is also possible. Let us introduce
an artificial source v with a supply of d units and two artificial arcs (v; 1) and (v; 2)
in (TP). We define the capacity uvi and cost gvi of arc (v; i) as follows:

uvi = ai; i = 1; 2; gv1(xv1) = �g(xv1); gv2(xv2) = 0:

We also let b1 = b2 = 0, i.e. factories 1, 2 are now intermediate nodes. the resultant
problem is then a capacitated minimum concave-cost flow problem with a single
nonlinear-cost arc (v; 1), which can be solved by some algorithms, e.g. developed
by Erickson et al. [2] and by Klinz and Tuy [12]. While the running time of the
former based on dynamic programming is exponential in the numbern of terminals,
the latter runs in pseudo-polynomial time as our algorithm does.

Klinz and Tuy’s algorithm (abbr. KT) is closely related to algorithm PDM. Both
algorithms are based on a parametric approach to rank-two quasiconcaveminimiza-
tion developed by Tuy et al. [18,23]. Moreover, they have a duality relationship:
PDM solves the parametric right-hand-side linear program (TP(y)) and KT solves
a parametric cost linear program, to find a globally optimal solution. The optimal
value function of the parametric cost linear program is piecewise affine but concave.
For each affine piece, Klinz and Tuy proposed to solve a minimum linear-cost flow
problem. Consequently, KT requires O((Dm0 logn0)(m0 + n0 logn0)) arithmetic
operations, where m0 = mn, n0 = m + n and D = minfa1;

P
n

j=1 bjg. On the
other hand, if we use Orlin’s algorithm [16] in Phase I, the number of arithmetic
operations required by PDM is bounded by O((C +m0 logn0)(m0 + n0 logn0)),
which is rather improved upon algorithm KT. The main reason for this difference
is that we had only to solve a shortest path problem for each break point of the
piecewise affine function f .

Since the core of the parametric approach is to specify the optimal value function
of a parametric linear program, we could devise some other procedures for doing
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so. For example, we can specify f by applying the parametric network simplex
algorithm to (TP(y)) as well (see e.g. Chapter 11 of [1]). Nevertheless, algorithm
PDM proposed in this paper possesses at least two advantages: (1) the computer
code is easy to write because Phases I and II can be implemented with a common
existing code: (2) for certain concave production costs, the algorithm is a fully
polynomial approximation scheme [6], i.e. it yields a globally �-optimal solution
in polynomial time. The second matter will be discussed in detail in the subsequent
article [14].
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